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Abstract. We present the results of the coherent anomaly method when applied to Ising 
models in one dimension with long-range interactions. This class of systems acts as an 
interesting and challenging test for the method because the critical exponents as well as 
the critical temperature, values of which are given by the method, depend on the rate of 
fall-off of the interactions. Thus one can see how accurately the method gives results which 
correctly reflect this dependency. The results obtained from this method are compared 
with results obtained by a variety of other methods. 

1. Introduction 

Since its recent introduction in 1986 by Suzuki [l] the coherent anomaly method 
(hereafter CAM) has been applied to an extremely wide range of critical phenomena 
including Ising spin systems [2-51, quantum spin systems [6], spin glasses [7], percola- 
tion [7,8] and self-avoiding random walks [9]. The method allows one to calculate 
estimates for the critical properties, e.g. the critical temperature and critical exponents 
in the case of Ising models, relevant to the particular problem under study. To use 
the method one considers a sequence of self-consistent approximations. Suzuki has 
shown how to extract a feature he has named the coherent anomaly from this sequence 
of approximations. This is then used to obtain estimates for the relevant critical 
properties of the phenomena. The new estimates are a great improvement on those 
the individual approximations would give. For example many of the approximations 
used give ‘classical’ values for the critical exponents, e.g. in the case of the Ising models 
y = 1, where the coherent anomaly method may give estimates of these critical exponents 
differing from the exact result by less than 1%, e.g. for the standard two-dimensional 
Ising model the method has been used to get y = 1.749 [4]. 

The most extensive use of the method has involved the two- and three-dimensional 
Ising models with nearest-neighbour, ferromagnetic interactions [2-41 where the results, 
often extremely accurate, have been based on a number of different sequences of 
self-consistent approximations. We will consider one-dimensional Ising models with 
long-range ferromagnetic interactions. By long range we mean interactions falling off 
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as l / r e  where 1 < 8 s 2 and the lattice spacing is of unit size. We have several reasons 
for choosing such systems. 

(i)  It is known that the critical exponents for these systems vary as a function of 
8. Hence, rather than calculating one value of y as with finite range two-dimensional 
systems and thus having only one comparison of the result, we have a range of values 
of y dependent on 8 and we make comparisons of our results over this entire range. 

(ii) In past studies it has been seen that the larger the sequence of the self-consistent 
approximations one has available, the greater the accuracy of the coherent anomaly 
method estimates. For one-dimensional systems one can obtain a rather lengthy 
sequence of approximations with minimal amounts of computer time. Thus one can 
study how the accuracy of the estimates depends on the length of the sequence. 

(iii) There has been extensive interest in these systems for a number of years now, 
particularly the l / r 2  case. This interest has resulted in a variety of rigorous results 
being established [lo-121 as well as a variety of numerical results [13-161. All the 
results show these systems to be delicate and therefore difficult to deal with. 

For all the above reasons we feel the class of long-range, one-dimensional, ferromag- 
netic Ising models presents an interesting class of models to investigate using the 
coherent anomaly method and one where the method would be critically tested. 

In section 2 we will very briefly outline the method and describe our sequence of 
approximations. Section 3 contains the numerical input, obtained from the approxima- 
tions of the previous section, and the estimates the method gives for the critical 
temperature and critical exponents y and p based on this input. The section also 
contains comparisons of our estimates with those values obtained by other methods. 
As stated earlier we believe this results in a new sensitive test of the method. Finally 
section 4 contains some concluding remarks. 

2. Cluster mean-field and CAM 

In this section we begin by describing our sequence of approximations which act as 
input for the coherent anomaly method. We then briefly outline Suzuki's method 
emphasising those aspects which are relevant to our particular analysis. For full details 
of the method we refer the reader to [l, 17,181. 

We start with a one-dimensional lattice of sites where on the ith site we have a 
spin variable ui = kl. The interaction of the spins is governed by the Hamiltonian 

where l i- j l  represents the distance between sites i and j with the distance between 
adjacent sites set equal to 1. The thermal average of a spin is defined in the usual way 

(Vi) = z-' C vi ex~[ -Pz ({u) ) I  (2) 
{U) 

where Z is the partition function, the sum is over all configurations of spins and 
p = l / k X  

Our sequence of self-consistent approximation consists of a sequence of what have 
been called cluster mean-field approximations. Here we treat all interactions among 
the members of the cluster exactly and we replace all interactions between a spin in 
the cluster and one outside the cluster with a mean-field interaction. For example the 
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Hamiltonian for the three-site cluster containing spins u l ,  u2, and ( T ~  would be 

%(U, ,  U21 0 3 )  

where m represents the mean field. We then require in usual mean-field fashion that 
the thermal average of the middle spin of our cluster equal m, i.e. for the above case 
(u2)= m. Then letting m+O we have a cluster mean-field estimate of the critical 
temperature. We look at odd-site clusters from 1 to 17 sites thus generating a sequence 
of 9 clusters with only 17 sites in the largest cluster. In the case of the square lattice 
Ising system Suzuki et a1 [ 2 ]  generates a sequence of 7 clusters with the 7th cluster 
containing 199 sites. Our restriction to a maximum of only 17 sites allows for a 
minimum of computation while still generating a reasonable sequence of input values. 

In addition to the critical temperature we can look at the zero-field susceptibility 
xN where the subscript N will denote the cluster size. One finds 

where T , ( N )  is the critical temperature of the N site cluster. As for the spontaneous 
magnetisation cluster, mean-field approximations give - 

m$ = m$/EI1’* ( 5 )  
where the superscript * on m denotes that we have spontaneous magnetisation. 

It is the values Tc( N ) ,  f N  and a which Suzuki’s method uses to calculate estimates 
to T,, y, and p where p here is the usual critical exponent not p = l / k T  In particular, 
based on Fisher’s scaling form of the correlation function, Suzuki shows 

T,(N) = T,+ C [ , f N ] - l ’ i y - ’ )  ( 6 )  
where c is an appropriate constant. For a derivation see e.g. [2, section 31. It is then 
easy to obtain 

(7) 

where 6T,(N) = Tc( N )  - T, where T, will denote the true critical temperature. In 
similar fashion Suzuki also finds 

l O d , f N / Z . L )  

log(ST,(L)/ 6Tc( N I )  
y - l =  

We use (7) and (8)  along with our cluster mean-field approximations to calculate 
values of T,, y and p. 

3. Results and comparisons 

In this section we present the results of our coherent anomaly method calculations. 
We have looked at values of 6 in (1) from 1.1 to 2.0 in steps of 0.1. We present in 
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detail only the cases 8 = 1.2 and 8 = 1.8. These two values are representative of two 
general situations one encounters in these long-range interactions systems, as will be 
explained later. As stated in the previous section, clusters from 1 to 17 sites were 
considered generating a sequence of 9 values for each of T,(N),  j., and s. These 
values constitute input into the coherent anomaly method and for 8 = 1.2 and 8 = 1.8 
are given in table 1. 

Any sequence of three clusters, and therefore three values of T,( N ) ,  j.,, and a, 
is enough using ( 7 )  and (8) to calculate T,, y, and p. However the best results in 
previous work have been obtained using the full sequence of values available and a 
least squares fit to obtain these results, (see e.g. [2, section 61). We have analysed our 
data using both approaches. 

We first present the results using a least squares fit. To try and investigate how to 
use the input most effectively in the coherent anomaly method we first look at a 
sequence involving only the 1, 3 and 5 site clusters, then the 1, 3, 5 and 7 site clusters, 
and continuing until we reach the sequence containing 1, 3, 5 , .  . . , 17 sites. In this 
way we illustrate the effect of increasing the length of the sequence. For 8 = 1.2 and 
1.8 our results are presented in table 2. 

As already mentioned only three values of T , ( N ) ,  j.,, and s are needed to use 
the method; thus it is useful to present the results obtained by looking at only sequences 

Table 1. Data for the CAM estimates for the various cluster sizes. 

e = 1.2 19 = 1.8 
- number 

of sites Tc x v  m t  Tc f h - 
1 11.1832 0.0894 1.7320 3.7645 0.2656 1.7320 
3 11.0170 0.0920 1.7526 3.3246 0.3336 1.8483 
5 10.9641 0.0931 1.7619 3.1503 0.3797 1.9218 
7 10.9373 0.0936 1.7675 3.0507 0.4160 1.9772 

11 1 0.9 1 00 0.0943 1.7743 2.9357 0.4732 2.0604 
13 10.9019 0.0945 1.7766 2.8983 0.4970 2.0937 
15 10.8957 0.0947 1.7785 2.8683 0.5186 2.1234 
17 10.8909 0.0948 1.7800 2.8436 0.5385 2.1502 

9 10.9211 0.0940 1.7714 2.9841 0.4465 2.0222 

Table 2. CAM estimates for T c ,  y and p using increasing lengths of sequences. For T, we 
have two estimates, one based on equation (7) and labelled T,(y)  and one based on 
equation (8) and labelled T,(p) .  

Sequence 6 = 1.2 e = 1.8 
of 
clusters TAY) Y Tc(P) P TAY)  Y T,(P) P 

~ 

1,395 10.478 1.107 10.728 0.4741 2.553 1.505 2.664 0.373 
193.5.7 10.496 1.104 10.255 0.4745 2.546 1.509 2.649 0.370 
1 , .  . . , 9  10.514 1.101 10.252 0.4748 2.539 1.513 2.636 0.368 
1 , .  . . , 11 10.527 1.099 10.249 0.4751 2.534 1.516 2.626 0.366 
1 , .  . . , 13 10.538 1.097 10.247 0.4753 2.530 1.519 2.618 0.365 
1 , .  . . , 15 10.547 1.095 10.245 0.4755 2.526 1.522 2.610 0.363 
1 , .  . . , 17 10.555 1.093 10.243 0.4757 2.523 1.524 2.604 0.362 
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of three clusters but increasing the size of the clusters i.e., a 1, 3 and 5 site sequence, 
then a 3, 5 and 7 site sequence, etc. Such results are presented in table 3 again for 
e = 1.2 and 8 = 1.8. 

Unlike the case of the nearest-neighbour, two-dimensional Ising model our system 
does not have exact results for comparison. Even for the nearest-neighbour, three- 
dimensional Ising model, one has a tremendous amount of previous numerical work 
resulting in very precise estimates of the critical temperature and critical-point 
exponents. Nevertheless for one-dimensional, long-range interaction systems one does 
have some estimates of the quantities under investigation for the entire range of 8 
values for which there is a phase transition i.e. 1 < 8 < 2 .  Extensive numerical calcula- 
tions involving finite chains and an extrapolation based on Pad6 approximates were 
performed by Nagle and Bonner [ 151. Using a renormalisation group approach Fisher, 
Ma and Nickel [ 131 calculate estimates of y. Also the work of Doman [ 191 and Silves, 
Pires and Ferreira [20] contain estimates of T,. 

Table 3. CAM estimates for Tc,  y and P using sequences involving only three clusters. 
For T, we have two estimates, one based on equation (7) and labelled T,( y )  and one based 
on equation (8)  and labelled T @ ) .  

Sequence e = 1.2 e = 1.8 
of 
clusters Y 

1,395 
3,537 
5,799 
7,9,11 
9, 11, 13 
11, 13, 15 
13,15,17 

10.478 
10.574 
10.673 
10.637 
10.709 
10.724 
10.759 

1.107 
1.087 
1.064 
1.073 
1.055 
1.050 
1.040 

TSP) 

10.728 
10.756 
10.770 
10.773 
10.776 
10.786 
10.791 

P 
- 
0.474 
0.477 
0.479 
0.479 
0.479 
0.481 
0.482 

T A Y )  

2.553 
2.524 
2.506 
2.494 
2.485 
2.479 
2.473 

Y T&P) 

1.505 2.664 
1.527 2.608 
1.543 2.575 
1.556 2.553 
1.567 2.538 
1.575 2.527 
1.584 2.517 

P 

0.373 
0.360 
0.351 
0.343 
0.337 
0.333 
0.328 

We note that in [13] it is shown that based on renormalisation group calculations 
for 1 < 8 < 1.5 one has y = 1, i.e., the critical point exponent takes its classical value. 
It is for this reason that we have chosen 8 = 1.2 and 8 = 1.8 as two representative values 
since one falls near the middle of the &interval where y takes on its classical value 
and one near the middle of the region where y takes on its non-classical values. 

For 8 = 1.2 table 2 shows that as the length of the sequence of clusters increases y 
and both approach their classical values in a very systematic fashion. Similarly table 
3 shows that considering only sequences of three clusters the values for y and p again 
approach their classical values in a systematic way as the size of the three clusters 
being considered increases. Comparing the two tables one sees that the sequence of 
the 13, 15 and 17 site clusters results in the best estimate for y and p where we assume 
the classical values are the correct values. Therefore, we see we need only consider 
three clusters simply considering the largest available. This however does not always 
hold. We have analysed the data of Suzuki et a1 [ 2 ]  for the two-dimensional nearest- 
neighbour Ising model involving seven different clusters ranging in size from 1 site to 
145 sites. Using the full sequence of seven clusters Suzuki et a1 obtained y = 1.7 (+0.05) 
and T, = 2.24 (0.036). Our results taking three clusters at a time are given in table 4. 
One does not see the systematic approach to the true values that we see for the 
long-range one-dimensional Ising systems. 
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Table 4. CAM estimates for T, and y of the nearest-neihbour two-dimensional Ising model 
on the square lattice using the published data of Suzuki, Katori and Hu  [2]. 

Sequence 
of clusters T' Y 

1,9,21 2.0154 1.8221 
9,21,45 2.4102 1.4958 
21,45,69 2.0475 1.9315 
45,69,97 2.2958 1.5834 
69,97,145 2.3659 1.4693 

Table 5. Comparisons of T,,  y and p CAM estimates with previous work. All CAM estimates 
are based on a three cluster sequence involving 13, 15 and 17 site clusters. 

o of l / re  

C A M  estimate for T , ( P )  
C A M  estimate for T,( y )  
Nagle-Bonner [15] 
estimate for T, 
C A M  estimate for y 
Nagle-Bonner [15] 
estimate for y 
Fisher el al [13] 
estimate for y 
CAM estimate for p 
Nagle-Bonner [15] 
estimate for P 

1.1 1.2 

20.959 10.791 
20.908 10.758 

10.997 
1.014 1.040 

1.0 

1.000 1.000 
0.495 0.482 

0.5 

1.3 

7.298 
7.244 

7.302 
1.097 

1.01 

1 .ooo 
0.460 

0.48 

1.4 

5.492 
5.430 

5.478 
1.167 

1.06 

1.000 
0.435 

0.45 

1.5 1.6 

4.363 3.577 
4.283 3.503 

4.334 3.532 
1.264 1.360 

1.11 1.19 

1.000 1.176 
0.408 0.381 

0.39 0.33 

1.7 

2.987 
2.927 

2.917 
1.463 

1.29 

1.440 
0.354 

0.26 

1.8 

2.5 17 
2.473 

2.424 
1.584 

1.50 

1.790 
0.328 

0.18 

1.9 

2.116 
2.114 

2.003 
1.701 

1.78 

2.226 
0.299 

0.10 

2.0 

1.750 
1.807 

1.633 
1.846 

2.2 

- 

2.750 
0.265 

0.0 

We also note that, in general, the estimates of T, are also increasing in both tables 
2 and 3 for 8 = 1.2. One does not have accurate estimates of T, so one cannot say 
unequivocally that T, is approaching the true value. However, based on the fact that 
the values for both y and p were approaching the correct values this gives us reason 
to believe this is true for T, as well. Furthermore we believe the same to be true for 
the 8 = 1.8 case where again we see for T, y and p change in a very systematic fashion. 
We note that the changes which occur in tables 2 and 3 for 8 = 1.2 are the reverse of 
those that occur for 8 = 1.8. Hence in one case the estimated values of the coherent 
anomaly method approach the true value from the low side while in the other case 
the estimated values approach from the opposite side. 

Based on the results of our detailed analysis for 8 = 1.2 and 1.8 we see that we 
need only present the estimates of T,, y and /3 being based on the sequence of 13, 15 
and 17 site clusters for the remaining values that we have studied. In table 5 we list 
our estimates for y, p and T, along with, for comparison, the estimates of Nagle and 
Bonner [ 151 for the same three quantities and, for y only, the results of Fisher et a1 
[ 131. For 8 = 2.0 we have additional work to compare our results to. In this case one 
has T, estimates by Bhattacharjee et al [14] of 1.587 and by Matvienko [16] of 1.522. 

4. Conclusions 

From the above sections we see that the coherent anomaly method results properly 
reflect the dependence of y, p and T, on 8. In addition the method in all cases studied 
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here gives systematically improving results as the size of the clusters used in the method 
increases. This has been shown for what is an entire class of systems due to the fact 
that 8 acts as a variable upon which all quantities depend. This is to be contrasted 
with a single system like the nearest-neighbour Ising model on a square lattice for 
which a single value for T,, y and /3 exists. This study further indicates the general 
applicability and versatility of the method when applied to spin systems. 

It should however be kept in mind that the accuracy of the results are not significantly 
better than results obtained by other methods. In fact for small 8 the renormalisation 
group results of Fisher, Ma and Nickel [ 131 are clearly superior. The results are similar 
to those obtained by Nagle and Bonner [15] and in terms of the work necessary to 
obtain them it would appear to be similar in amount. 

We want to mention that there is another method for estimating critical properties 
of spin systems, due to Indekeu, Maritan and Stella [21], which has some general 
features similar to the coherent anomaly method. In particular the method uses 
mean-field results based on two cluster sizes along with a normalisation group strategy 
to obtain estimates of the critical properties. Unfortunately the method has not been 
used to investigate the systems considered in this paper. 

Finally we should point out that we have not made an attempt to achieve the best 
possible results by use of large amounts of computer time on a very powerful computer. 
Rather, as stated earlier, the attempt was to investigate the general properties of the 
CAM as it relates to long-range interaction models. All computations for T,( N ) ,  q, 
T, and p were done on a personal computer. The remaining calculations could also 
have easily been done on a personal computer but were not simply because we initially 
started on a mainframe. 
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